16th March 2021

Equine Herpesvirus-1 therapy

Lutz Göhring, Karsten Feige, Marianne Sloet, Dominique De Clercq, Vinzenz Gerber, Orsolya Korbacska-Kutasi, Ignacio Corradini, Fernando Malalana, Ruth Morgan, Lisa Katz, René Van den Hoven, Marco Duz, Jessika-M. Cavalleri, Anne Couroucé

Once biosecurity/quarantine guidelines have been followed, there are numerous medical options for treatment of Equine Herpesvirus-1 (EHV-1) positive horses with and without clinical signs of Equine Herpesvirus Myeloencephalopathy (EHM). If a horse begins to show clinical signs of EHM, it is important to consider that intensive and committed nursing care plays a pivotal role in the management of these cases. This may include provision of soft bedding and helmets to protect the horse from head trauma, the use of indwelling urinary catheters and manual evacuation of the rectum and assisting the horse to stand (using slings) if possible. If the horse is unable to stand the horse should be maintained in sternal recumbency, and rolled to different sides every 2-4 hours. Monitoring and maintaining hydration is vitally important.

		when to apply:						
	compound	pre-	viremia	post-	recommendations	level of evidence:		
		viremia		viremia		1 (poor) – 10		
				/EHM		(good)		
1	Valaciclovir	✓	✓	✓	Loading dose of			
					30mg/kg PO TID			
					for 2 days, then			
					20mg/kg PO BID			
					up to 14 days			
					(Maxwell et al.			
					2017)			
	Claims: i) decreases severity	7 (i) RCT						
	magnitude of viremia (Maxw	9 (ii) RCT						
	al. 2009).							
	Comments: i) unlikely to have							
	drugs; iii) most effective at re							
	given early during an infection	ven early during an infection, ideally pre-viraemic. iv) Acyclovir is not						
	recommended due to poor bi							
2	NSAIDs		✓	✓	Cox-2 specific: full-			
					dose during febrile			
					days, half-dose for			
					3–5 days beyond			
					fever (Goehring et			
					al. 2017)			
	Flunixin meglumine (1.1mg/	2 (i) <i>in vitro</i> model						
	0.1mg/kg PO SID), or other							
	BID).							
	Claims: i) decreased concent							
	decrease frequency of lymph							
	Comments: likely to interfere							

Table 2: Commonly used drugs for EHV-1 positive horses, both with and without clinical signs of EHM.

3	Dexamethasone			✓	0.05–0.07mg/kg				
					once daily for 5				
					days; do not				
					combine with				
					NSAID (Goehring				
					et al. 2017)				
	Claims: i) decreased concent	ration of in	flammatory	y mediators	during viremia may	2 (i) <i>in vitro</i> model			
	decrease frequency of lymph	1 (ii) clinical							
	vasculature during vasculitis	experience							
	Comments: likely to interference								
4	Unfractionated (unfrx)/		✓		50 (unfrx) – 80				
	Low-molecular-weight				(LMW) IU/kg SQ				
	(LMW) heparin				BID for $2 - 3$ days				
					(Walter et al. 2016,				
					Stokol et al. 2018)				
	Claims: i) interferes with pla	telet activat	tion (Stoko	l et al. 2018	3); ii) interferes with	2 (i) in vitro/ex			
	thrombus formation (Walter	et al. 2016)).			<i>vivo</i> model			
	Comments: likely to interfere	2 (ii) clinical							
	spinal cord hemorrhage is a l	experience							
5	Aspirin	√	✓		5mg/kg PO q48hrs				
					for up to 10 days				
	Claims: i) decreased concent	ration of in	flammatory	y mediators	during viremia may	2 (i) in vitro model			
	decrease frequency of lymph	2 (ii) clinical							
	2017); ii) clinical observation	experience							
	Comments: likely to interferent								
6	Lidocaine CRI		✓		IV Bolus				
					(1.3mg/kg)				
					followed by CRI				
					maintenance				
					(0.05mg/kg/minute)				
	Claims: i) decreased concent	2 (i) in vitro							
	decrease frequency of lymph	ocyte-endo	thelial cell	interaction	(Goehring et al.	model, 2 (ii)			
	2017); ii) decreases leukocyt	e extravasa	tion during	post-ischer	mic events (Cook et	projected			
	al. 2008); however, EHM wa	s not inclu	ded as a dis	sease.		pathogenesis			
	Comments: unlikely to interf	ere with ot	her drugs; 1	equires cor	ntinuous observation				
	and special equipment (CRI!); unknown	n effects du	ring periods	s of blood-brain				
	barrier breeches as can occur during EHM.								
7	Zinc supplementation	✓			70-200mg/500kg				
					horse/day PO				
	Claims: i) supplementation p	rior to an E	EHV-1 outb	reak may d	ecrease risk of	1 (i) retrospective			
	development of EHM (Traub	-Dargatz e	t al. 2013).			cohort study			
	Comments: excessive Zinc s								
	particularly in young horses								
8	Vitamin E	✓	✓	✓	1000 – 2000 IU PO				
					once daily				
	Claims: i) anti-oxidant, not e	1 (i) clinical							
	Comments: unlikely to interf	ere with ot	experience						
8	DMSO		✓	✓	1L of 5-8% solution				
					IV (once – BID) for				
L					up to 3 days.				
	Claims: i) free radical scaver	1 (i) clinical							
L	nephron/hepatotoxicity and t	experience							

RCT: Randomised Control Trial; CRI: Constant Rate Infusion; DMSO: Dymethyl sulphoxide;

References

Cook VL et al. (2008) Attenuation of ischaemic injury in the equine jejunum by administration of systemic lidocaine. *Eq Vet J.* 40:353-357

Garré B et al. (2009) Evaluation of orally administered valacyclovir in experimentally EHV1-infected ponies. *Vet Microbiol.* 135:214-221

Göhring L et al. (2017) Anti-inflammatory drugs decrease infection of brain endothelial cells with EHV-1 in vitro. *Eq Vet J.* 49(5):629-636

Maxwell LK et al. (2017) Efficacy of the early administration of valacyclovir hydrochloride for the treatment of neuropathogenic equine herpesvirus type-1 infection in horses. *Am J Vet Res.* 78(10):1126-1139

Stokol T et al. (2016) Unfractionated and Low-Molecular-Weight Heparin and the Phosphodiesterase Inhibitors, IBMX and Cilostazol, Block Ex Vivo Equid Herpesvirus Type-1-Induced Platelet Activation. *Front Vet Sci.* 17:99

Traub-Dargatz et al. (2013) Case-Control Study of a Multistate Equine Herpesvirus Myeloencephalopathy Outbreak. *J Vet Int Med.* 27(2):339-346

Walter J, et al. (2016) Prevention of equine herpesvirus myeloencephalopathy - Is heparin a novel option? A case report. *Tierarztl Prax Ausg G Grosstiere Nutztiere*. 44:313-317